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The Burgers equation, in spherical and cylindrical symmetries, is studied numerically 
using pseudospectral and implicit finite difference methods, starting from discon- 
tinuous initial (N wave) conditions. The study spans long and varied regimes- 
embryonic shock, Taylor shock, thick evolutionary shock, and (linear) old age. The 
initial steep-shock regime is covered by the more accurate pseudospectral approach, 
while the later smooth regime is conveniently handled by the (relatively inexpensive) 
implicit scheme. We also give some analytic results for both spherically and 
cylindrically symmetric cases. The analytic forms of the Reynolds number are found. 
These give results in close agreement with those found from the numerical solutions. 
The terminal (old age) solutions are also completely determined. Our analysis 
supplements that of Crighton & Scott (1979) who used a matched asymptotic 
approach. They found analytic solutions in the embryonic-shock and the Taylor- 
shock regions for all geometries, and in the evolutionary-shock region, leading to old 
age, for the spherically symmetric case. The numerical solution of Sachdev & Seebass 
(1973) is updated in a comprehensive manner; in particular, the embryonic-shock 
regime and the old-age solution missed by their study are given in detail. We also 
study numerically the non-planar equation in the form for which the viscous term 
has a variable coefficient. It is shown that the numerical methods used in the present 
study are sufficiently versatile to tackle initial-value problems for generalized 
Burgers equations. 

1. Introduction 
In  the last two decades there has been widespread interest in nonlinear wave 

phenomena, mainly through the so-called ‘model equations’, derived from a larger 
system of PDEs, representing the most quintessential information from the parent 
system. Two of the most representative models are the Korteweg-de Vries equation 
and the Burgers equation. The former represents a balance between linear dispersion 
and quadratic nonlinearity, the latter between small linear diffusion and quadratic 
nonlinearity. The standard Burgers equation is written as 

(1.1) u, + uuz = +8u5z, 

(see Lighthill 1956) where, in the context of gasdynamics, u = w +a-a, is the excess 
wavelet velocity, w and a being the particle velocity and sound speed respectively; 
z = 5- a, t is a coordinate measured in a frame of reference which moves in the same 
direction as the wave at the undisturbed speed of sound a,; 5 and t are space and 
time coordinates. The coordinate 2 enables one to follow changes in the waveform 
without further changes in the origin. The coefficient S is the ‘diffusivity of sound’, 
being a combination of different diffusivities which affect acoustic attenuation. 
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Equation (1.1) has a rich history (Benton & Platzman 1972), and its pre-eminence 
derives partly from its exact linearizability via the Hopf-Cole transformation into 
the standard heat equation. This enables one to solve pure initial-value problems for 
(1.1) by making use of the corresponding solutions for the heat equation in a simple 
and analytic manner (Lighthill 1956 ; Whitham 1974). 

In  physical applications, however, (1.1 ) is of limited use, since the model equations 
that represent reality are always more complicated than (1.1). Crighton (1979) has 
surveyed a host of generalized Burgers equations (GBEs) appearing in nonlinear 
acoustics. They include equations for unsteady finite-amplitude waves in gases, 
liquids and solids, bubble dynamics and cavitation in liquids, and phonon interactions 
and the quantum acoustics of solids. We choose here a particular generalized Burgers 
equation, 

J u  
(1.2) 2t 

Ut + uux + - = +6UZX, 

for a thorough treatment - both numerical and analytic. This equation combines the 
effects of geometrical spreading - spherical for J = 2 and cylindrical for J = 1 - with 
those of nonlinear convection and linear diffusion as represented by (1.1). Equation 
(1.2), with a sawtooth N wave initial condition which evolves and decays over an 
infinite time, poses as severe difficulties in analysis as any other generalized Burgers 
equation. The numerical methods we detail in this paper are sufficiently versatile and 
sturdy to handle related problems for other GBEs. 

Equation (1.2) in a slightly different form (see (2.8)) was first mooted by Lighthill 
(1956). He argued that the geometrical effects or area change could be included in 
(1.1) by suitably redefining u and making S in (1.1) a function of the area. To retain 
the analytic facility of the standard form of the Burgers equation, he approximated 
such an equation by assuming 6 to be again a constant. This approximation would 
work if the shock remained thin and conformed to Taylor-shock structure. Both the 
assumptions fail as the N wave evolves, as we shall explain later in detail, (and as 
was first shown by Crighton & Scott 1979). Subsequently, Leibovich & Seebass (1974) 
derived (1.2), using the method of multiple scales. Since (1.2) (like most GBEs which 
arise directly from applications) does not admit linearization by a Hopf-Cole-like 
transformation, its exact solution for J = 1, 2 does not seem possible. Sachdev & 
Seebass (1973) studied (1.2) numerically using Douglas-Jones (1963) implicit finite 
difference scheme, starting with a smooth N wave with a Taylor-shock structure 
already embedded in it. Moreover, as Crighton (1979) pointed out, the calculations 
were stopped rather early in the evolution of the N wave. Thus, the embryonic-shock 
regime, when the sawtooth adjusts itself to a Taylor shock, and the evolution to final 
decay of the N wave, to its 'old age' when a purely linear form prevails, were missed 
in the numerical study. An important result of this study was, however, the 
derivation of approximate formulae for the lobe Reynolds number, 

R = f s," udx, 

which is the ratio of the product of velocity amplitude and lengthscale of the front 
lobe of the N wave to the diffusivity 6, for J = 1,2. This was based on the assumption 
that the slope of the N wave at the node is given by the inviscid (lossless) solution 
for all time. The results thus obtained agreed very well with the numerical solutions, 
particularly for the spherical case. But this agreement was rather limited since the 
numerical study was not carried far enough in time. We shall show in the present 
paper that these formulae fail in the later near-linear or linear regimes of the wave. 
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As a sequel to the work of Sachdev & Seebass (1973), Crighton & Scott (1979) 
undertook a systematic matched asymptotic analysis of the N wave. They were able 
to find solutions in the embryonic-shock regime, and the shock wave displacement 
due to diffusion for all the three cases, J = 0, 1, and 2 ;  for J = 0 the latter agreed 
with Lighthill’s earlier derivation. Their analysis for this asymptotic solution was 
based on the following assumptions : 

(i) the shock width remains small compared with the lengthscale of the lossless 

(ii) the shock displacement due to diffusivity remains small; 
(iii) the Taylor shock retains its form. 
These assumptions are violated in different order at later times, depending upon 

the geometry - plane, cylindrical or spherical. The main achievement of this work, 
besides finding the location of the centre of the shock for all geometries, was a careful 
delineation of various domains (in space and time) wherein different types of 
solutions are valid. For example, the perturbation solution for the plane case 
becomes invalid due to the failure of assumptions (ii) and (iii). For the cylindrical 
case, assumptions (i)-(iii) are all violated at the same time. For the spherical 
symmetry, the solution was obtained except for one small spacetime region. The 
old-age time domain was demarcated and the old-age solution was completely 
predicted. The cylindrical case remained less complete; the magnitude of the 
multiplicative numerical amplitude constant in this case, in contrast to the spherical 
case, could not be determined. 

The present paper constitutes a thorough revision of the work of Sachdev & 
Seebass (1973) in the light of the work of Crighton & Scott (1979). It gives a 
complete numerical study of non-planar N waves. Although the major thrust is 
numerical, there are also some analytical points, particularly for the cylindrical case, 
wherein we have been able to get a ‘generalized similarity’ form of the solution for 
a certain ‘scaled inverse function’, motivated by the known analytic form for the 
plane case. Thus, it complements the work of Crighton & Scott (1979), although the 
approaches are quite different. In  the present paper, we use a pseudospectral finite 
difference approach for GBEs in a manner similar to that of Fornberg & Whitham 
(1978) for nonlinear dispersive waves (see also Gazdag & Canosa 1974 and Gazdag 
1973). The use of this technique was necessitated by the inability of the Douglas-Jones 
implicit difference scheme to give accurate results for the (embryonic) shock regime 
when the initial profile is taken as a (discontinuous) sawtooth, in contrast to the 
smooth initial profile used by Sachdev & Seebass. The results obtained by the implicit 
scheme are so inaccurate in the shock regime that they would vitiate the subsequent 
(infinitely long in time) evolution of the profile. However, once the embryonic shock 
adjusts itself to a Taylor shock (which it does pretty swiftly for all geometries), the 
implicit difference scheme can be resorted to, and it yields an accuracy comparable 
to that of the pseudospectral approach in about one-ninth of the computer time. 

We carried out our numerical computations all the way from a discontinuous 
sawtooth profile via embryonic shock, Taylor shock and a wide (evolutionary) shock 
to the old-age solution. We carried out first a careful comparison of our numerical 
solution with the known exact solution for the plane case when the Reynolds number 
is large. The embryonic shock for the plane case settles down to a Taylor shock when 
the constant to in the plane solution 

flow ; 

x / t  
1 + ( t / to )+  exp (x2/2St)’ 

U =  

to = [exp (8,) - 1I2ti, (1.4) 
12-2 
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‘converges ’, and the exact solution (1.3) takes over. The R, is the Reynolds number 
at ti. For smaller Reynolds number, say R = 3, Sachdev & Seebass have demonstrated 
that the Dougladones implicit scheme gives excellent results. As we mentioned 
earlier, the pseudospectral approach is used only in the time regime extending from 
the sawtooth stage to the formation of the Taylor shock. 

We check numerical shock details for all geometries with the analytic formulae of 
Crighton & Scott (1979). We note that their formulae give a good representation of 
the shock centre for t < 30, the initial time ti being of order unity. The shock width 
at this stage is already of the order of the initial (lobe) width of the wave. Our 
‘generalized similarity solution ’, for the scaled inverse function for the cylindrical 
case gives excellent Reynolds number prediction for all times greater than t x 300. 
The formula of Sachdev & Seebass for J =  1 gives a good representation of the 
Reynolds number up to t x 100. Therefore, there is a time regime 100 < t < 300, for 
which no analytic form of the Reynolds number has been found. For the spherical 
case, our analytic approach does not uniquely prescribe the form of the solution. 
However, a certain ‘reasonable’ choice of the arbitrary function in the analysis 
provides an excellent Reynolds number prediction for all times from the Taylor-shock 
regime to its ha1 decay. It becomes possible to get (numerically) the unknown 
constants in the old-age (dipole) solutions for J = 1, 2. The old-age solution, thus 
uniquely determined, agrees very well with the numerical solution in the entire 
profile in the linear evolutionary regime of the wave. The Reynolds number, which 
is very small at this stage, is accurately determined by the old-age formula and agrees 
very well with that computed from the numerical solution. 

The scheme of the paper is as follows. Section 2 gives the basic equations and initial 
conditions for the non-planar Burgers equation in the forms used by Sachdev & 
Seebass (1973) and Crighton & Scott (1979), and the relation between the two forms. 
Section 3 details the numerical schemes - implicit finite difference and pseudo- 
spectral. Sections 4, 6 and 7 deal with plane, cylindrical and spherical cases, 
respectively. Section 5 analyses the generalized similarity solution for the scaled 
inverse function for J =  1, 2. Finally, the results and conclusions of the present 
study are given in $8. 

2. Basic equations and initial conditions 
We take up the study of the generalized Burgers equation 

ut+uu,+- Ju = ;&us.; 
(2 t )  

the symbols have already been explained in the introduction. Initially, at  t = ti, 
we take a sawtooth profile of half length do 

This is the point when a steepening of a wave under the lossless equation [& = 0 in 
(2. l)] has resulted in discontinuous shock formation. The subsequent evolution of the 
sawtooth takes place under the competitive influences of nonlinear convection, small 
diffusion, and geometrical spreading when J = 1 or 2. Before we proceed to give the 
numerical scheme for (2.1)-(2.2) in $3, it is worth giving the formulation of Crighton 
& Scott (1979), since we shall be comparing their matched asymptotic solution in the 
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thin-shock region with our numerical results. They commence their study with the 
Leibovich & Seebass (1974) form of (2.1), given by 

U,++(y+l )  UUz+JU/2t = +dux,, (2.3) 

which coincides with (2.1) if we write u = $(r+ 1) U and A = 8. The variables in (2.3) 
are all dimensional and y is the adiabatic constant. An initial disturbance uo(x) at 
t = ti with a lengthscale do and amplitude Uo is assumed. The dimensional form of 
the initial sawtooth is taken to be 

for J = 0, 

for J =  1, 

A uo ti, E = Y+l 
d0 (Y+l)UOdO 

uo ti, 6 = Y+l 
d0 (Y+ 1)UodoTo 

@Yoti, € = Y+l 
2dll (Y + 1)UO do 

To = - 

2 4  
To = - 

A exp(-l/TO) for J = 2. To = - 

as produced, for example, by a piston motion at zo = ti/ao where xo is the distance 
from centre of symmetry. A certain transformation of the variables is brought about 
to change (2.3) into a non-dimensional Burgers form with a variable viscosity: 

, 

I if J = 0, 

1 l++(~+l)(Uoti /do)ln(t / t i )  if J =  2.1 

The transformations (2.5)-(2.6) are motivated by the inviscid form of the solution 

The factor t (y+  1) is also removed by (2.5)-(2.6) and the initial time is reduced to 
T = 1. The new form of (2.3) is 

(2.8) VT+ VVX = M T )  V X X ,  

where g(T) = l ,+ (T+To- l ) ,  exp - , (3 
for plane, cylindrical and spherical symmetry, respectively, 

The expressions for To and E for different geometries are 

(2.10) 

(2.11) 
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When the geometric and convection effects are of comparable importance, To is of 
order 1 and 8 is small. 

3. Pseudospectral and implicit finite-difference schemes 
It was clearly established by Sachdev & Seebass (1973) that the Douglas-Jones 

implicit predictor-corrector method for nonlinear parabolic equations is quite 
adequate in describing the evolution of an N wave, provided the initial profile is 
smooth. Indeed the sawtooth was endowed with a Taylor structure and this formed 
the initial profile. But this is not appropriate, as we pointed out in the introduction, 
since we skip the embryonic-shock region in the process. The sharp discontinuity in 
the sawtooth is not tackled properly by the implicit scheme; hence the need for a 
more accurate difference scheme. Before we describe the pseudospectral approach, 
we briefly discuss the Douglas4ones predictor-corrector implicit scheme for the 
nonlinear parabolic equation 

u,, = F(x,  t ,  u, u,, Ut)’  (3.1) 

According to this scheme, the discretised form of (3.1) is 

(3.2) 

(3-3) 

ut,, = u(xt,t,), 2, = ih, t, =jk. 1 where 4 ut, , = h-2(%+l,, - 2%,, + at-1, ,I9 

hut. ,  = @)-’ (%+1,,-%-1,,)9 

This difference scheme has a truncation error of O(h2 + k2) where h and k are space 
and time mesh sizes, respectively. Douglas & Jones (1963) have demonstrated the 
convergence of the difference scheme (3.2)-(3.3) for (3.1). The details of how the 
scheme (3.2) was used for (2.1) are given in Sachdev & Seebass (1973). To circumvent 
the difficulties posed by a sharp discontinuity, we chose a numerical scheme which 
is referred to as pseudospectral. This was employed earlier by Fornberg & Whitham 
(1978) for nonlinear model equations for dispersive waves. They could tackle initial 
‘well’ conditions, as well as positive and negative step conditions. In this numerical 
approach what is special is the computation of space derivatives with very high 
accuracy by finite Fourier transform method. [Gazdag 1973 refers to this as the 
accurate space derivative (ASD) method.] The accuracy is limited only by the ability 
with which a distribution can be defined on a finite set of mesh points. Gazdag (1973) 
has shown that for the inviscid Burgers equation, the amplitude and phase of the 
error in the Fourier components remain bounded. He has also considered the evolution 
of a plane step to a Taylor shock under the governance of the plane Burgers equation; 
the accuracy obtained by the method, at an advanced time level in terms of spatial 
derivatives, was found to be very high. 

We consider the finite Fourier transform, 
1 K-1 

iZ(k,,t) = Z u(mAx,t)  exp(-ik,mAx), (3.4) 
m-o  

of a function u(x,  t )  over the interval (0,2x) of x. Here, the mesh size Ax is equal to 
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2 n / K ,  with K denoting the number of mesh points; k, are the wavenumbers varying 
between 0 and K -  1 .  The inverse finite Fourier transform is given by 

u(mAx,t) = I: u(k,,t) exp(ik,mAx). 
lkrl -= :K 

The spatial derivatives easily follow from (3.5) : 

I u,(mAx,t) = Z ik,G(k,,t) exp(ik,mAx), 

u,.(mAz,t) = Z (ik,)2fi(k,,t) exp(ik,mAx). 

lkil < t K  

lkil < t K  

The solution at  t + A t  is obtained from the Taylor series 

At2 At3 
2! 3! 

u(x,t+At) = u(x,t)+Atut+-utt+-uttt+ . . . , (3.7 

wherein the time derivatives ut, utt, etc., are substituted from the basic equation (2.1 
in terms of the spatial derivatives as follows: 

Ut 
J U  

2t 
= -uuz--+fluz,, 

J Ju 
Utt = - U t U , - U U , t - - U t + ~ + f l u , , t ,  2t 

J J Ju 
2t t 2  t3 

Uttt = - U t t U , - 2 u t U , t - U U , t t - - U t t + - U  --+fluttzz. 

In our computations, we used four terms in the Taylor series (3.7), so that the 
truncation error is O(At4) (Gazdag 1973). The initial domain was taken to be (0,27t) 
and was divided into 256 equal mesh points in which the (initial) sawtooth profile 
u = x in 1x1 < do occupied only 80 points so as to allow the profile to grow due to 
diffusion as it evolves. We describe the actual calculations in the next section with 
reference to the plane Burgers equation, for which the exact solution is known. 

4. The plane Burgers equation 
In this section we present the numerical calculations for the plane Burgers 

equation and compare them with the exact solution. All computations discussed here 
were carried out with single precision on a microcomputer. Equation (2.1) with the 
discontinuous initial profile (2.2) wassolved by the pseudospectral method (hereinafter 
to be referred to as the PS method) as detailed in $3. The spatial domain was 
normalized to (0,2n) to satisfy periodic conditions required by the finite Fourier 
transform. The initial sawtooth was placed in the middle of the domain with 
adequate space on either side of the wave to allow for its diffusion. We chose the mesh 
sizes as Ax = 0.005 and At = 0.01, and do = 0.205, uo = 0.205, S = 0.001, t, = 1.  The 
initial number of mesh points was taken to be 256. As the computation commenced, 
we noticed a spurious tail of magnitude 0(10-3) in the first timestep and it was cut 
off. The tail in the subsequent calculations was much smaller and, in fact, vanished 
after a few steps. Similar spurious tails were noticed by Gazdag k Canosa (1974). 
First we checked the accuracy of the PS method. A t  each time level the constant to 
as given by (1.4) was calculated. Table 1 shows the convergence of to to a (definite) 
finite value at about t = 2. 

This signalled the end of the embryonic-shock regime, whereafter the shock 
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t R 10-’0t, 

1 .o 21.354 0.18793 
1.1 2 1.488 0.22534 
1.2 21.446 0.22556 
1.4 21.369 0.22564 
1.6 21.302 0.22564 
1.8 21.243 0.22563 
2.0 21.190 0.22563 

TABLE 1. ‘Convergence ’ of the value of to as time increases (see (1.4)) 

u(x,t = 15) 

X 

(1) 
0.03 
0.33 
0.63 
0.72 
0.75 
0.78 
0.81 
0.84 
0.87 
0.90 

IMP 
(2) 

0.002 
0.022 
0.04196 
0.04562 
0.04049 
0.02453 
0.00833 
0.00194 
0.00038 
O.ooOo7 

PS 
(3) 

0.002 
0.022 
0.04196 
0.04550 
0.04037 
0.02474 
0.00843 
0.00192 
0.00037 
O.ooOo7 

Exact 
(4) 

0.002 
0.022 
0.04196 
0.04550 
0.04037 
0.02474 
0.00843 
0.00192 
0.00037 
O.ooOo7 

Difference 

(2) - (4) (3) - (4) 
0 0 
0 0 
0 0 
0.00012 0 
0.00012 0 
0.00021 0 

-0.00010 0 
o.ooOo2 0 
o.ooOo1 0 
0 0 

TABLE 2. Comparison of numerical (IMP and PS) solution with exact solutions 
of the Burgers equation 

assumes the form of a Taylor shock. Table 2 shows that the numerical solution (PS) 
agrees with the exact solution to more than five decimal places. At about t = 6 the 
Taylor shock widened to about $to. A t  this stage we switched over to the implicit 
predictor-corrector scheme (hereinafter to be called the IMP method), as the PS 
method is too expensive in terms of computer time to be used throughout the 
evolution and as the accuracy of the IMP method is reasonably good (with an error 
of 0(10-4) in the worst case in the shock regime). This is clear from table 2 which 
shows the solution of (2.1) at t = 15 (the initial profile for the IMP scheme was the 
smoothed out solution at t = 14). The last two columns give the difference between 
IMP and the exact solution, and PS and the exact solution. In the early stage, at 
t = 3, the IMP method had an error 0(9 x in the shock layer while the PS 
method had an error O(3 x As the profile became smoother at t =  6, the error 
by the PS scheme reduced to 0(10-6) while the IMP method still has an error 
O(3 x in the shock layer and a smaller error 0(10-6) elsewhere. This error in the 
shock transition is characteristic of the IMP method, and it persists throughout the 
calculation when the Reynolds number is large, but does not grow, as evidenced by 
the solutions at later times. Table 3 gives the numerical (IMP) and the exact solutions 
in the large-Reynolds-number regime for the plane Burgers equation at t = 200,400 
and 500. For smaller initial Reynolds numbers, say R = 3, and with a smooth initial 
shock, the solution obtained by Sachdev & Seebass (hereinafter referred to as SS) 
shows the same order of accuracy. With a reduced mesh size there is a uniform 
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X 

0.04 
0.24 
0.84 
1.84 
2.48 
2.64 
2.84 
3.04 
3.24 

Num. Exact 

0.00020 0.00020 
0.00120 0.00120 
0.00420 0.00420 
0.00920 0.00920 
0.01211 0.01204 
0.01080 0.01072 
0.00297 0.00310 
0.00022 0.00022 
o.oooo1 o.oooo1 

X 

0.08 
0.88 
2.48 
3.44 
3.52 
3.60 
4.08 
4.48 

Num. Exact 
0.00020 0.00020 
0.00220 0.00220 
0.00620 0.00620 
0.00847 0.008402 
0.00851 0.008403 
0.00835 0.00821 
0.00090 0.00096 
o.ooo02 o.ooo02 

X 

0.08 
1.68 
3.28 
3.92 
4.08 
4.48 
4.88 

Num. Exact 
0.00016 0.00016 
0.00330 0.00336 
0.00644 0.00656 
0.00743 0.00749 
0.00695 0.00699 
0.00133 0.00145 
O.ooOo5 O.ooOo5 

TABLE 3. Numerical (IMP) and exact solutions of the Burgers equation 

u(x,t = 3) 

X 

(1) 
0.01 
0.05 
0.09 
0.13 
0.17 
0.21 
0.25 
0.33 
0.37 
0.39 

IMP 
AX = 0.01 

(2) 
0.0033334 
0.0166670 
0.0300006 
0.0433342 
0.0566678 
0.0700015 
0.0833348 
0.10845 17 
0.0144973 
0.001 6943 

IMP 
Ax = 0.005 

(3) 
0.0033334 
0.0166670 
0.0300006 
0.043 3343 
0.0566679 
0.0700016 
0.0833343 
0.1047879 
0.0163013 
0.001 6499 

PS 
Ax = 0.01 

(4) 
0.003 333 
0.0166678 
0.0300021 
0.043 3365 
0.066 6710 
0.0700057 
0.083 3390 
0.1039273 
0.01 7 0474 
0.001 6279 

PS 
AX = 0.005 

(5) 
0.003 3334 
0.016 6669 
0.0300005 
0.0433341 
0.0566677 
0.0700013 
0.083 3331 
0.103 9248 
0.0170449 
0.001 6321 

Exact 

0.0033333 
0.016 6667 
0.03 
0.0433333 
0.0508667 
0.0099999 
0.083 3312 
0.1039148 
0.01 7 0647 
0.001 6365 

(6) 

TABLE 4. Solution of plane Burgers equation using different mesh sizes and different 
methods. Initial profile at t = 2 was taken to be smooth. 

improvement of accuracy in the entire profile by the PS method, whereas the IMP 
method shows little change in the shock regime (see table 4). As the profile evolved 
under the influence of diffusion and nonlinear convection, the non-zero part of the 
profile would occupy about 1200 mesh points when t = 100. During the evolutionary 
process we restricted the number of mesh points to 256 by doubling the mesh size 
whenever it became necessary. In  the plane case the exact solution was always 
available for comparison (see table 3). 

We also examined the evolution of the initial discontinuous profile using the IMP 
method, starting at t = 1. It was observed that the error in the numerical solution 
is O( 10-7 at the grid point. Further, to given by (1.4) did not converge but continued 
to  oscillate for a long time. The position of the shock centres, as given by Crighton 
t Scott (1979), is 

and the numerical shock centre, following Lighthill (1956), was approximated by 

= +("1+"2), (4-2) 
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t Xrn Urn 

1.1 0.2 0.180 
1.3 0.216 0.162 
1.5 0.232 0.150 
2.0 0.267 0.129 
3.0 0.324 0.105 

10.0 0.582 0.057 
20.0 0.81 0.04 
30.0 0.992 0.032 
50.0 1.273 0.025 

(1) (2) (3) 

Shock 
width 

(4) 
0.020 
0.027 
0.033 
0.039 
0.045 
0.08 
0.114 
0.14 
0.18 

Shock centre 

Num. CS 

0.218 0.217 
0.238 0.238 
0.254 0.258 
0.292 0.302 
0.358 0.373 
0.646 0.687 
0.906 0.969 
1.104 1.183 
1.415 1.521 

(5) (6) 

Difference 

0.001 
0.0 

-0.004 
-0.01 
-0.015 
-0.041 
-0.063 
- 0.079 
-0.0106 

ud 
(8) 

0.027 
0.014 
0.025 
0.04 
0.046 
0.034 
0.025 
0.021 
0.016 

0.151 
0.088 
0.169 
0.309 
0.442 
0.601 
0.623 
0.638 
0.644 

TABLE 5. Shock details for plane Burgers’ equation, t ,  = 1 ,  E = 0.0099 (see (2.11)). x, = location 
of the point of maximum amplitude urn, ud = maximum of the difference, between Taylor-shock 
structure and numerical shock structure. CS, Crighton & Scott (1979) 

t 

2.0 
5.0 

10.0 
20.0 
50.0 

100.0 
200.0 
300.0 
400.0 

R (num.) 

21.19044 
20.732 11 
20.385 45 
20.039 25 
19.581 10 
19.23382 
18.886 52 
18.68374 
18.539 19 

R (exact) 

21.19044 
20.732 30 
20.38572 
20.039 15 
19.58100 
19.23444 
18.88785 
18.68512 
18.541 27 

U,(O, t )  

Num. Exact 

0.50000 0.50000 
0.20000 0.20000 
0.10000 0.10000 
0.05000 0.05000 
0.02000 0.02000 
0.01oO0 0.01000 
0.00500 0.00500 
0.00333 0.003 33 
0.00250 0.00250 

TABLE 6. Reynolds number for plane Burgers equation at different times aa obtained 
from numerical (IMP) and exact solutions. This table also gives u,(O, t) 

where x1 and x2 are spatial coordinates of the points having u = 0 . 9 5 ~ ~  and 
u=0.05urn, respectively, u, being the maximum amplitude of the wave. The 
position of the centre as given by both the formulae agrees for t < 30 to an error 
less than 7 % (see table 5 ) .  The shock width S defined by 

s = x2-x1, (4.3) 

is also given in table 5.  The shock width a t  t = 500 is 2.9 times the initial (half) length 
of the wave profile. The maximum of the difference between the numerical shock 
structure and the Taylor-shock structure defined by 

Urn 
U =  

1 +exp (urn (x--s)/d)’ (4.4) 

is also given in table 5. In the large-Reynolds-number regime which we have depicted 
in table 5 ,  the shock structure is essentially Taylor-type. The numerical and analytic 
values of the lobe Reynolds number and the slopes of the profile at the origin are 
given in table 6. The Reynolds number, analytic and numerical, agrees to 5 
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FIGURE 1. Solution of plane Burgers equation : embryo shock to Taylor shock. 

significant digits whereas the slope at the origin agrees with the slope from the 
inviscid formula [cf. (2.7)] extremely well, confirming the observation of SS in this 
regard. 

The wave profile in the plane case decays very slowly. In  fact, the lobe Reynolds 
number changes from 21 at t = 1 to 18.1 at t = 500. While the amplitude of the wave 
falls considerably from u,  = 0.2 at t = 1 to u, = 0.007 at t = 500, the profile diffuses 
to 28 times its original length. This explains the small change in the Reynolds number. 
Sachdev & Seebass (1973) have previously confirmed the accuracy of the I M P  scheme 
in the smaller-Reynolds-number regime, R = 3 (see table 2 in SS). 

The diffusipn of the plane N wave is shown in figures 1 and 2. 

5. An analytic approach 
Before we present the numerical results, we derive a ‘generalized similarity 

solution’, in a form similar to that for the plane case, for a function which is a certain 
‘scaled’ inverse of u. It is well known that the similarity solution which exists for the 
cylindrical case is not relevant to the present problem (Sinai 1976). The following 
analysis applies to all geometries, J = 0, 1, 2. Equation (2.1) is transformed by 
introducing the variables 

into TV, + (2721 - E)V, + JV = bug. (5-2) 
Another change of variables 

7 = (2, v = ?/Jtv-1, (5.3) 
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t 0.02 

I =  100 

1=200 

1=3W 

1 = 5 0 0  

0.01 / 

L -0.02 

FIQTJRE 2. Solution of plane Burgers equation: thiok-shook regime. 

transforms (5.2) into 

2 7 V v 7 7 - 4 7 ~ + ( 2 ~ - v ) ( v - 2 7 v 7 ) +  V(JV-7V7)+3VV7 = 0.  (5.4) 

In terms of the variables V ,  7 and 7, the N wave solution (1 .3)  for the plane Burgers 
equation becomes 

v = T + t i i T 2 e 7 ,  

(5.5) 

Indeed, the transformations (5.1) and (5.3) were motivated by the form (1 .3) .  Now 
we seek solution of (5.4) for J = 1, 2 in the form 

t-1 2 2 

2 !  
= T+~~T~+~O;T~T+L p T 7  +.... 

[cf. (5.5)].  Substituting (5.6) into (5.4) and equating coefficients of TO, ql, v2, . . . , on 
both sides, we get 

3f1+(J-1) f0-7f ;+2T = 0, (5.7) 

(5.8) 

(5.9) 

5fof2-f1(f1 -2Jfo +27)-7(flf; +fo f 3  = 0, 

7fo f 3  -f#fl - 2 ( J +  1 If0 + 7f; + 671 - ~ f o  f ; + 2f , [  (J  + 1 )f1- ~ f ; ]  = 0, 

etc. We consider the cases J = 1 ,  2 separately. 
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(i) J = 1 .  We choose fo, f,, f, in the form 

fo = 27 + b , ~ ,  + b,7,, 

and 

f, = c17+c2r2+c373, 

f, = d , ~ + d , ~ ~ + d , r ~ ,  

(5.10) 

(5.11) 

(5.12) 

by combining suitably the explicit time dependences in the inviscid and the 
asymptotic forms (2.7) and (5.14) for the solution to (1.2). Thus, (5.10)-(5.12) are 
dictated by the known behaviour of this solution. It turns out that in this case all 
the coefficients b,, c l ,  c,, c,, d,,  d, and d,  become known in terms of b, (which in any case 
should remain unknown since it is the coefficient in the asymptotic behaviour which 
generally cannot be found except numerically; cf. the appearance of t;i in the 
planar solution). The coefficients are explicitly found to be c = d ,  = 0 ,  
C ,  = 3,, d,  = &be, c, = d, = b, and b, = + 3bg or - 3bj. The choice b, = + 3b\ turns out 
to be the appropriate one. The other functions, f r , i  > 2, become known without 
solving the differential equation. This is not entirely unexpected. It does happen in 
many problems (see Canosa 1973, for example). Theft, i > 2, are rational functions 
of r having correct asymptotic behaviour for r + 00 . For example, 

a, 7, +$, r3 +3, b, f l  + b: r6 
2 + b, r + b, 7, f 3  = 9 (5.13) 

-b37 ,  as7+00. 

This agrees with the asymptotic ‘old-age’ form 

(5.14) 

when the transformation (5.1) and (5.3), etc., are carried out. The cylindrical N-wave 
solution may therefore be written as 

c2 

u = Z t t - i [ f ~ ( t ) + S f l ( t ) + ~ f 2 ( t ) +  ...I-,, (5.15) 

wherefo(t), fi(t), f,(t) etc. are given by (5.10)-(5.12) with r = d and 6 = z(ZSt)-t. To 
obtain the lobe Reynolds number, we integrate (1.2) with J = 1 from z = 0 to z = 00, 

and use the condition that u and u, vanish at z = 00. u,(O, t )  is found from (5.15) 
to be 

u,(O,t) = ,[2ti+3bgt+b3tf]-1. (5.16) 
1 

We thus have 
d R R  -+- = [2d+3btt+b3fl]-l. 
dt 2t -$ 

Integration of (5.17) gives 

R = (3’+ (tb,)-f In[ 

(5.17) 

(5.18) 

where C is the constant of integration. 
(ii) J = 2. In this case, the equations forfo,f,, . . . , are found to  be 

3f1 +fo - 7f; + 27 = 0, (5.19) 

5fof2--fi(fi-4fo+2r)-77(fif~+fof;) = 0 etc-9 (5.20) 
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From (5.19) and (5.20), and the inviscid solution (2.6) for J = 2, it seems natural to 
introduce the variables 

f o  = rFo, fl = rF1, f, = TF,, ... . (5.21) 

and 8 = 1117. 

Equations (5.19) and (5.20) become 

-- O0 - 3F1+2, 
dB 

(5.22) 

(5.23) 

Unlike the case J = 1 ,  it  does not seem possible to get F, explicitly. Indeed, it can 
be verified that F,, F, etc. can be uniquely determined once F, is prescribed. There 
seems no unique logical way to fix F,. However, we have found that a linear 
combination of the terms contributing to f o  from the inviscid solution and the ‘old 
age’ asymptotic solution gives good results (see $7).  Thus, taking 

where fo(t) = t Int+a,ti, 

we find, as for J = 1, that the Reynolds number is given by 

(5.24) 

(5.25) 

(5.26) 

where C is the constant of integration. 

6. The cylindrical Burgers equation 
The initial discontinuous profile for this case was taken to be the inviscid solution, 

- for 1x1 < do, 

0 for 1x1 > do, 

where ti = 0.5, do = 0.205 and R(t,) = 21.0125. The transition of this profile to one 
with a Taylor shock, via the embryonic stage is shown in figure 3. The shock details, 
including the shock centre as given by Crighton t Scott (1979; hereinafter referred 
to as CS) are given in table 7. The shock centre, as given by the matched asymptotic 
solution of CS, 

s = d0@[1-6(T-1+(T,-1) lnT)/(y+l)  U,d,T,], 

agrees with the numerical solution up to t x 25, with an error less than 5 %. At this 
stage, the shock width is approximately 1.44,. The shock is rather thick and one of 
the assumptions underlying this stage of the matched asymptotic solution of CS 
breaks down. The maximum of the difference in the amplitude of numerical shock 
and the Taylor shock as a fraction of u, increases as the shock thickens. The 
computations were carried from t = 0.5 to t = 2000. Figures 3-5 show the evolution 
of the wave in three typical time regimes - Taylor shock, thick shock and old age. 
The Reynolds numbers - numerical, analytic according to (5.18), and by the formula 
of SS - are shown in table 8. This table also shows the numerical value of the slope 
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t 
(1) 
1 .o 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 
15.0 
20.0 
30.0 
40.0 
50.0 

100.0 
150.0 

Xm 

0.221 
0.255 
0.275 
0.291 
0.305 
0.314 
0.323 
0.330 
0.337 
0.343 
0.368 
0.387 
0.414 
0.436 
0.437 
0.521 
0.573 

(2) 
u m  

0.108 
0.061 
0.044 
0.034 
0.028 
0.024 
0.021 
0.019 
0.017 
0.015 
0.01 1 
0.008 
0.006 
0.004 
0.003 
0.002 
0.001 

(3) 

Shock 
width 

(4) 
0.035 
0.057 
0.073 
0.087 
0.1 
0.113 
0.125 
0.135 
0.145 
0.154 
0.196 
0.232 
0.293 
0.346 
0.391 
0.570 
0.705 

Shock centre 

Num. CS 

0.249 0.250 
0.297 0.301 
0.330 0.334 
0.355 0.359 
0.377 0.380 
0.395 0.397 
0.411 0.412 
0.426 0.426 
0.440 0.438 
0.452 0.449 
0.506 0.493 
0.548 0.526 
0.615 0.575 
0.670 0.610 
0.717 0.639 
0.898 0.762 
1.03 0.775 

(5) (6) 

Difference 
(5)-(6) ud 

(7) (8) 
-0.001 0.013 
-0.004 0.011 
-0.004 0.008 
-0.004 0.006 
-0.003 0.005 
-0.002 0.004 
-0.001 0.004 

0.0 0.004 
0.002 0.003 
0.003 0.003 
0.013 0.003 
0.022 0.002 
0.041 0.002 
0.059 0.001 
0.079 0.001 
0.171 0.001 
0.26 O.OOO4 

ud/um 

0.118 
0.176 
0.182 
0.184 
0.184 
0.184 
0.185 
0.185 
0.186 
0.197 
0.239 
0.267 
0.311 
0.341 
0.354 
0.412 
0.427 

(9) 

TABLE 7.  Shock details for cylindrical Burgers equation, To = 1.2, E = 0.0165 (see (2.11)); 
abbreviations are explained in table 5. 

t 

5.0 
10.0 
20.0 
50.0 

100.0 
150.0 
200.0 
250.0 
350.0 
450.0 
650.0 
850.0 

1050.0 
1350.0 
1650.0 
2000.01 

R(Num) 

6.52471 
4.466 58 
3.01 1 53 
1.72225 
1.08011 
0.80369 
0.64448 
0.53965 
0.408 82 
0.32989 
0.23854 
0.18711 
0.15374 
0.121 60 
0.10055 
0.08364 

R 

Equation Equation 
ux(0, t )  

(6.3) 
6.52365 
4.46647 
3.01 183 
1.72107 
1.07054 
0.782 34 
0.61054 
0.49329 
0.33949 
0.24036 
0.11602 
0.03869 

-0.01582 
-0.07255 
-0.11336 
- 0.148 82 

(5.18) 

5.61662 
3.845 12 
2.599 5 1 
1.507 94 
0.97085 
0.73931 
0.60448 
0.51440 
0.39940 
0.32781 
0.241 78 
0.19106 
0.157 26 
0.12320 
0.10024 
0.081 33 

Num. 

0.10039 
0.050 14 
0.02502 
0.00976 
0.00447 
0.00269 
0.001 82 
0.001 32 
0.00080 
0.00053 
0.00029 
0.000 18 
0.000 12 
0.00008 
0.00005 
0.00004 

Analytic 

0.10000 
0.05000 
0.02500 
0.01000 
0.00500 
0.00333 
0.00250 
0.00200 
0.001 43 
0.001 11 
0.00077 
0.00059 
0.00048 
0.00037 
0.00030 
0.00025 

TABLE 8. Reynolds number for cylindrical Burgers equation at different times: numerical, and 
analytic according to (6.3) and (5.18) with d = -4.716, b;i = 26.44. Numerical and analytic values 
of u J 0 ,  t) are also shown 
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0.: 

U 

0. 

-0.8 -0.4 

t = 0.5 r 

0.4 0.8 
X 

' -0.1 

- -0.2 

FIQURE 3. Solution of cylindrical Burgers equation: embryo shock to Taylor shock. 

I = 20 

t = 30 

t = 50 

t 1 = 90 

0 0.5 1 .O 1.5 

FIQURE 4. Solution of cylindrical Burgers equation : thick-shock regime. 
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B v \-0.00008 

L 

FIGURE 5. Solution of cylindrical Burgers equation : old-age regime. 

of the profile at 2 = 0 and that given by the inviscid solution, u,(O, t )  = 1/(2t). These 
two slopes agree to three significant places up to t x 100. The numerical Reynolds 

number and tha t  given by SS, R = --+(+?, 1 
2 

agree to 3 significant digits up to t e 100. Here to is a constant of integration in the 
derivation of (6.3) from the cylindrical Burgers equation and waa evaluated by SS 
using the initial Reynolds number in the Taylor-shock regime. After t x 100, the 
disparity between the numerical Reynolds number and that obtained from (6.3) 
increases. Indeed, at t z 1O00, (6.3) gives a negative Reynolds number! Thus, (6.3) 
is valid until R x 1. On the other hand, formula (5.18) gives the Reynolds number 
with an error less than 3.5 % from t x 300 to t x 00. The accuracy improves with 
time, confirming the asymptotic (with respect to time) nature of the solution (5.15). 
We note that the asymptotic solution is rendered unique by the choice of positive 
sign for b\. We must, however, point out that the solution has been found up to only 
three terms in the series for V. This is adequate for the purpose of finding the 
Reynolds number. The values of the constants b, and C in (5.18) were found by using 
the values of the Reynolds number at two distant times, t = 500 and t = 1600. They 
were found to be b 3  = 26.44 and 0 = -4.716. The old-age solution given by 
Leibovich & Seebass (1974) is 

(6-4) 

The constant C,, by comparison with the numerical solution (i.e. matching the 
analytic and numerical maxima), was found to be approximately 161.02. Table 9 
shows the analytic and numerical values of u, and Reynolds number in the old-age 
regime. The agreement is quite satisfactory. 

u = C,  t-2x exp ( - z2/26t) .  
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t 
(1) 

1550 
1600 
1650 
1700 
1800 
1850 
1900 
1950 
2000 

104 u, 

(2) (3) 
Num. Oldage 

0.504 0.502 
0.482 0.480 
0.462 0.459 
0.442 0.440 
0.408 0.402 
0.392 0.387 
0.378 0.372 
0.364 0.358 
0.350 0.343 

Difference 
(2) - (3) 

(4) 
-0.002 
-0.002 
-0.003 
-0.002 
-0.006 
-0.005 
-0.006 
-0.006 
-0.007 

Reynolds numbers 

Num. Old age 

0.1067 0.1067 
0.1035 0.1034 
0.1005 0.1002 
0.0977 0.0972 
0.0925 0.0919 
0.0901 0.0890 
0.0879 0.0871 
0.0857 0.0848 
0.0836 0.0827 

(5) (6) 

TABLE 9. ' Old-age ' solution for the cylindrical Burgers equation : numerical, and analytic 
according to (5.14) with c1 = 161.02 

We have compared the old-age solution of (2.8), 
X 

E T 3  = c s ~  exp ( -X2/sT2) ,  

for the cylindrically symmetric case, (g(T) = !j(T+ To- 1 )  in (2.8)), with that obtained 
numerically. The initial profile was taken to be the discontinuous sawtooth (2.10). 
The parameters To and B (see (2.11)) were chosen to be 1.2 and 0.017, and the mesh 
sizes Ax and AT were selected to be 0.005 and O.OOO1, respectively. The full initial 
N wave occupied 400 points. When the profile became smooth, the PS scheme was 
replaced by the IMP scheme. The mesh sizes Ax and AT were increased to 0.01 and 
0.005, respectively, as the N wave broadened and had everywhere relatively small 
gradients. Unlike the solution of (1.3), the solution of (2.8) required the inversion of 
a very large order (about 1000-2500) matrix as the profile evolved from one with a 
Taylor shock to its old age. This required large computing time. The profile attains 
its old age at  T w 99. The constant C, in (6.5) is 0.34, and the maximum amplitude 
is O( lo-). The maximum amplitude of the numerical solution in the entire old-age 
phase agrees very well with that from (6.5) with C,  = 0.34. However, the prediction 
of CS that C, is independent of E, cannot be checked from this single computation 
at  one value of 6. 

7. The spherical Burgers equation 
The initial discontinuous profile for this case was taken to be 

for 1x1 < do, 

for 1x1 > do, 

where ti = 1.76, do = 0.2, and R(ti) = 20. This profile evolves through the embryonic- 
shock stage to one with a Taylor shock as shown in figure 6. Table 10 shows the shock 
details in the manner discussed earlier for the cylindrical case. The CS formula for 

1 - 8e-1/To (Ei( T / T o )  - Eo( l/To)) 
(Y+ 1 )  Uodo 

the shock centre 
s = doT: 

X 

where Ei(x) = [ t-l exp ( t )  dt (7.3) 
J-CC 
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t 

2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 
15.0 
20.0 
30.0 
50.0 

100.0 
150.0 

(1) 
%n 

(2) 
0.204 
0.245 
0.270 
0.284 
0.295 
0.302 
0.308 
0.312 
0.316 
0.328 
0.335 
0.345 
0.363 
0.412 
0.462 

Shock 
u, width 
(3) (4) 

0.144 0.028 
0.072 0.049 
0.046 0.068 
0.033 0.085 
0.025 0.1 
0.02 0.114 
0.017 0.128 
0.014 0.141 
0.012 0.153 
0.007 0.205 
0.005 0.249 
0.002 0.32 
0.001 0.428 
0.0004 0.611 
0.0002 0.742 

Shock centre 
~ 

Num. CS 
(5) (6) 

0.225 0.225 
0.285 0.289 
0.321 0.326 
0.347 0.351 
0.367 0.370 
0.385 0.385 
0.399 0.398 
0.412 0.408 
0.424 0.417 
0.470 0.448 
0.505 0.467 
0.560 0.488 
0.644 0.506 
0.806 0.506 
0.936 0.488 

TABLE 10. Shock details for the spherical Burgers equation 

Difference 
(5)-(6) ud ud/um 

(7) (8) (9) 
0.0 0.012 0.086 

-0.004 0.013 0.185 
-0.005 0.009 0.196 
-0.004 0.007 0.197 
-0.003 0.005 0.2 

0.0 0.004 0.205 
0.001 0.004 0.21 
0.004 0.003 0.232 
0.007 0.003 0.253 
0.022 0.002 0.322 
0.038 0.002 0.354 
0.072 0.001 0.406 
0.138 0.0005 0.44 
0.299 0.0002 0.45 
0.448 0.0001 0.458 

To = 2.12. E = 0.0065 (see (2.11)); - 
abbreviations are explained in table 5 

gives an accurate description of the Taylor shock up to t x 16, with an error of less 
than 5 % . At this stage the shock width is O(d,).  Figures 6-8 display the typical form 
of the N wave when it  has a Taylor shock structure, when it has a thick shock, and 
when it has attained old age, respectively. The Reynolds number as given by the 
numerical solution SS, and the generalized similarity solution for the ' scaled ' inverse 
of u are given in table 11. This table also gives u,(O, t) as obtained numerically and 
by the inviscid expression l / ( t  lnt). The agreement is very good up to t x 30, when 
the Reynolds number is about 1. The approximate formula of SS is 

The disparity between (7.4) and the numerical Reynolds number increases until R, 
as given by (7.4), becomes negative at t x 350. Thus, the SS formula works again up 
to R x 1. The 'reasonable choice' off,(t) in (5.25) gives a Reynolds number (5.26) 
which agrees very well with the numerical Reynolds number throughout the 
evolution of the profile, from t = 3 to t = 900. At this stage, that is, when t = 900, 
the profile practically dies out. The constants a, and in (5.26) were found to be 
0.0028 and 35.50, respectively. The maximum error is 2% at t x 50. The old-age 
formula 

(7.5) u = C , X ~ - ~ / ~  exp ( -x2/26t), 

with C,  = 263.92 obtained from the numerical solution gives a satisfactory profile 
and Reynolds number, as shown in table 12. We also verified the old-age analytic 
solution of CS, 
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r = 2  

r = 3  

r = 5  

I =  10 
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u 

0.2 

0.15 

0.10 

0.05 

-0.6 - 0.4 -0.2 

t = 76 r 

X 

- 0.05 

-0.10 

-0.15 

-0.20 
FIQURE 6. Solution of spherical Burgers equation: embryo shock to Taylor shock. 

r = 20 

t =  30 
0.0002 

t = 50 - 
0.4 0.8 Ao O . I &  X 

-0.8 -0.4 
1 I I I 1 

-0.002 

-0.004 

L 

FIQURE 7. Solution of spherical Burgers equation : thick-shock regime. 
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u I  
0.M 

0.01 

L-o.Oooo2 

F I G ~ E  8. Solution of spherical Burgers equation : old-age regime. 
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R 

t 

5.0 
10.0 
15.0 
20.0 
30.0 
40.0 
50.0 

100.0 
150.0 
200.0 
250.0 
350.0 
450.0 
550.0 
650.0 
750.0 
850.02 
948.0 

Num. 

6.967 88 
3.35331 
2.16937 
1.583 35 
1.00411 
0.71909 
0.55095 
0.23003 
0.133 7 1 
0.08992 
0.06563 
0.04047 
0.02808 
0.02090 
0.01628 
0.01311 
0.01083 
0.009 14 

Equation 
(7.4) 

6.94886 
3.34906 
2.16666 
1.681 33 
1.002 33 
0.71656 
0.54697 
0.21521 
0.10889 
0.06744 
0.02747 

-0.00646 
-0.022 81 
- 0.03331 
-0.04023 
-0.04505 
-0.04867 
-0.061 16 

Equation 
(6.26) 

6.951 13 
3.36361 
2.17273 
1.58876 
1.01228 
0.72888 
0.561 64 
0.23932 
0.14022 
0.09428 
0.06861 
0.041 79 
0.02861 
0.02086 
0.01698 
0.01268 
0.01032 
0.00860 

Num. 

0.12442 
0.04348 
0.02463 
0.01666 
0.00961 
0.00642 
0.00461 
0.001 43 
0.00066 
0.00036 
0.00022 
0.000 10 
0.00006 
0.00003 
0.00002 
0.00001 
0.00001 
0.00001 

Analytic 

0.124 14 
0.04341 
0.02461 
0.01669 
0.00980 
0.006 78 
0.006 11 
0.002 17 
0.001 33 
0.00094 
0.000 72 
0.00049 
0.00036 
0.000 29 
0.000 24 
0.000 20 
0.000 17 
0.000 16 

TABLE 11. Reynolds number for the spherical Burgers equation at different times: numerical, end 
analytic according to (7.4) and (6.26) with E = 36.60 and a, = 0.0028. Numerical and analytic 
values of uJ0, t )  are also shown 
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t 

550 
622 
650 
700 
750 
800 
850 
900 
948 

(1) 

104 u, 

(2) (3) 
Num. Oldage 

0.167 0.167 
0.132 0.131 
0.121 0.120 
0.105 0.103 
0.092 0.090 
0.080 0.079 
0.072 0.070 
0.064 0.062 
0.058 0.056 

Difference 
(2) - (3) 

(4) 
0.0 

-0.001 
-0.001 
-0.002 
-0.002 
-0.002 
-0.002 
-0.002 
-0.002 

Reynolds numbers 

Num. Old age 

0.0204 0.0209 
0.0174 0.0174 
0.0163 0.0163 
0.0146 0.0146 
0.0131 0.0131 
0.01 19 0.01 19 
0.0108 0.0109 
0.0099 0.0100 
0.0091 0.0092 

(5) (6) 

TABLE 12 'Old-age' solution for the spherical Burgers equation: numerical, and analytic 
according to (7.5) with c, = 263.92 

(see (2.5)-(2.6) for notation). For the purpose, (2.8) was solved numerically. The 
parameters To and e were chosen to be 1.2 and 0.00431, respectively, and the time 
mesh size A T  was taken to be O.OOO1 initially. We found it expedient to solve (2.8) 
numerically because the exponential transformation which connects this equation 
with (1.2) would introduce considerable errors. Also, there is likely to be an 
inaccuracy in the manner in which the numerical solutions are matched with old-age 
solutions - either at the maxima or in the integral sense. The solution of (2.8) with 
variable viscosity attains its old age at T x 11, so the inaccuracy in the numerical 
solution will be relatively smaller in comparison with that for (1.2), for which the old 
age is attained at  t x 550. The constant in the old-age solution is, therefore, more 
accurately obtained from the old-age solution of (2.8). The time constant T2 which 
heralds the onset of old age is given by €cl exp (TJT,) = 1 (see (3.47) of CS) and is 
found to be approximate1 9.2. At this time the shock width ei exp (iTz/To) agrees 
closely with the scale d o f  the main N wave, its magnitude being 3.0331 at 
T = T2 = 9.2 (see above (3.47) of CS). The old age sets in at T x 11, when the 
maximum amplitude is O(3 x The numerical solution at later times agrees with 
(7.6) very closely (to six decimal places). The order symbol in (7.6) becomes an 
equality if a factor 0.67 multiples the right-hand side. These calculations show that 
the evolutionary-shock regime prevails over a very restricted time range and is 
followed almost immediately by the old-age decay. Note, however, that this 
computation involves only a single value of e and therefore cannot be regarded as 
confirming the €-dependence predicted in (7.6). 

8. Conclusions 
The GBEs that appear in applications unfortunately do not lend themselves to 

exact analytic treatment. No ' Hopf-Cole-like ' transformation is available to render 
them linear. One has therefore to take recourse to matched asymptotic analysis, 
generalized similarity analysis, etc., to cover at least some of the space and time 
domains. The complete solution of the problem starting from, say, a discontinuous 
initial N wave (or any other profile), is possible only by numerical methods. This is 
what we claim to have accomplished for the non-planar GBEs (see figures 9-10 for 
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FIGURE 9. Solution of plane, cylindrical and spherical Burgers equations : from discontinuous 
initial profile to Taylor shock. 

FIGURE 10. Solution of plane, cylindrical and spherical Burgers equation at t = 20. 
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the comparative evolution of the three N waves). We have ensured that the numerical 
solution is accurate in the entire time domain from the initial sawtooth form to the 
final old age of the solution. The pseudospectral finite difference method provided 
the necessary accuracy in the early part of the evolution of the wave profile when 
the shock is very steep and the implicit scheme is unable to tackle the sharp gradients. 
A t  later times when the shock has assumed a Taylor structure, the implicit scheme 
is sufficiently accurate and yields good results with a much smaller computational 
cost than the pseudospectral approach. The present problem poses most of the 
difficulties that a GBE can present and, therefore, the numerical methods given here 
are sufficiently sophisticated to handle any GBE. Even an initial-boundary-value 
problem should be easily amenable to the numerical methods used here. 

By way of analysis, we have given a generalized similarity solution for the inverse 
function (see (5.3)) for J = 1, which extends the validity of the (linear) old-age 
solution (which may be referred to as the similarity solution in the present case) 
backward in time to a considerable span. This solution has been verified numerically 
and gives accurate Reynolds number over a long time. Our analysis for J = 1 covers 
time regimes over which the matched asymptotic solution of Crighton & Scott does 
not hold and, thus, supplements their results. On the other hand, Crighton & Scott 
(1979) have solved the spherically symmetric case for almost the entire evolution of 
the wave; there is a small space-time region over which an irreducible nonlinear 
problem remained unsolved. The order of the constant in the old-age solution was 
correctly found; however, the constant in the old-age solution for the cylindrically 
symmetric case could not be determined. We have supplemented these results 
especially for the cylindrically symmetric case, both numerically and analytically. 
Yet there are some analytic gaps which are not filled by either work. A complete 
exact analytic solution of this class of problems does not seem possible at this stage. 
We have checked our numerical solution with the analytic solution wherever they 
are available - the matched asymptotic solution, generalized similarity solution for 
the inverse function and the old-age solution-and have found good agreement 
among them. In particular, we have found the unknown numerical constants for 
the (dipole) old-age solutions by comparison with the numerical solution. For this 
purpose, we found it desirable to solve the form (2.8) of (2.3), which has a variable 
(time-dependent) coefficient of viscosity. This equation presents some difficulties of 
its own in its numerical solution (see $86 and 7), but has the advantage that the old 
age is attained at a relatively shorter time in the variable T so that the errors of 
computation are small and the constants in the asymptotic formula (7.6) can be 
accurately determined. In  turn the old-age solution verifies the veracity of the final 
stage of the numerical solution and confirms that no (serious) cumulative errors have 
been permitted by the numerical method (see tables 9 and 12) even though 
computation of the solution had to be carried out over a long time. 

The authors are grateful to Professor Sir James Lighthill for his encouragement. 
They wish to express their sincere thanks to Professor D. G. Crighton for his 
constructive criticism and helpful suggestions. 
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